Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.572
Filtrar
1.
Environ Monit Assess ; 196(5): 472, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662176

RESUMO

Endemic medicinal plants deserve immediate research priorities as they typically show a limited distribution range, represent few and fragmented populations in the wild and are currently facing anthropogenic threats like overharvesting and habitat degradation. One of the important aspects of ensuring their successful conservation and sustainable utilization lies in comprehending the fundamental seed biology, particularly the dormancy status and seed germination requirements of these plants. Here, we studied the seed eco-physiology and regeneration potential of Swertia thomsonii-an endemic medicinal plant of western Himalaya. We investigated the effect of different pre-sowing treatments, sowing media and sowing depth on seed germination parameters of S. thomsonii. Seeds of S. thomsonii exhibit morphophysiological dormancy (MPD), i.e. when the embryo of the seed is morphologically and/or physiologically immature. Wet stratification at 4 °C for 20 days, pre-sowing treatment with 50 ppm GA3 and pre-sowing treatment with 50 ppm KNO3 were found ideal for overcoming dormancy and enhancing the seed germination of S. thomsonii. Furthermore, seed germination and seedling survival were significantly influenced by pre-sowing treatments, sowing media and sowing depth. The percentage of seed germination and seedling survival got enhanced up to 84-86% and 73-75% respectively when seeds were pre-treated with GA3 or KNO3 and then sown in cocopeat + perlite (1:1) at a depth of 1 cm. The information obtained in the present study outlines an efficient protocol for large-scale cultivation of S. thomsonii thereby limiting the pressure of overexploitation from its natural habitats and may also help in the restoration and conservation of this valuable plant species.


Assuntos
Conservação dos Recursos Naturais , Germinação , Plantas Medicinais , Sementes , Swertia , Plantas Medicinais/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Conservação dos Recursos Naturais/métodos , Swertia/fisiologia , Índia , Plântula/crescimento & desenvolvimento , Ecossistema , Dormência de Plantas
2.
Braz. j. biol ; 84: e254174, 2024. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1360213

RESUMO

Anredera cordifolia (Ten.) Steenis is a vine species native to Brazil that is considered an unconventional food plant and a medicinal species whose phenolic compounds exert antioxidant activity. Since the production of metabolites is determined by environmental factors and leaf maturity, it is important to track these changes in order to determine the best time to harvest. This study aimed to verify whether leaf phenology and seasonality cause variations in the amount of phenolic compounds and in the antioxidant activity of this species. The leaves were collected in different seasons between September 2018 and April 2019, and separated according to maturity: young, mature, and senescent. Daily atmospheric temperature and rainfall data were used to characterize the collection period. The total phenolic content (TPC), determined by Folin-Ciocalteu method, was significantly higher in the young leaves collected in winter, a season of lower temperatures. These leaves showed 54.4 mg of gallic acid equivalents per 100 g of dry matter (mg GAE 100 g-1DM). Other results averaged 25.6 mg GAE 100 g-1DM. The highest antioxidant activity, assessed via the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method, regardless of leaf phenology, was observed in leaves harvested in autumn (73.7%) and winter (71.1%), seasons with lower rainfall. Leaves harvested in summer and spring had lower antioxidant action rates (54.3 e 37.5%, respectively). There was no significant correlation between the total phenolic content and antioxidant activity. Thus, the phenolic composition of A. cordifolia, and consequently its activity on free radicals, varies seasonally in response to temperature and rainfall, and may or may not interact with the age of the leaves.


Anredera cordifolia (Ten.) Steenis é uma trepadeira nativa do Brasil considerada uma planta alimentícia não convencional e uma espécie medicinal, cujos compostos fenólicos exercem ação antioxidante. Como a produção de metabólitos é determinada por fatores ambientais e pela maturidade das folhas, é importante acompanhar essas mudanças a fim de determinar a época de colheita. Neste estudo objetivou-se verificar se a fenologia foliar e a sazonalidade ocasionam variação na quantidade de compostos fenólicos e na ação antioxidante dessa espécie. As folhas foram coletadas em diferentes estações, entre setembro de 2018 e abril de 2019, e separadas conforme a maturidade: jovens, maduras e senescentes. Os dados diários de temperatura atmosférica e pluviosidade foram usados para caracterizar o período de coleta. O conteúdo de fenólicos totais (TPC), determinado pelo método Folin-Ciocalteu, foi significativamente maior nas folhas jovens coletadas no inverno, período caracterizado por temperaturas mais baixas. Estas folhas apresentaram 54,4 mg equivalentes de ácido gálico por 100 g de matéria seca (mg GAE 100 g-1DM) . A média dos outros resultados foi de 25,6 mg GAE 100 g-1DM. A maior ação antioxidante, avaliada pelo método do radical livre 2,2-difenil-1-picrilhidrazil (DPPH), foi observada em folhas colhidas no outono (73,7%) e inverno (71,1%), independentemente da fenologia foliar. Nestes períodos a pluviosidade foi menor. Folhas colhidas no verão e na primavera apresentaram menores percentuais de ação antioxidante (54,3 e 37,5%, respectivamente). Não houve correlação significativa entre o conteúdo de fenólicos totais e a atividade antioxidante. Conclui-se que a composição fenólica de A. cordifolia e, consequentemente, sua ação sobre radicais livres, varia sazonalmente em resposta à temperatura e pluviosidade, podendo ou não interagir com a idade das folhas.


Assuntos
Plantas Medicinais/crescimento & desenvolvimento , Estações do Ano , Compostos Fenólicos , Antioxidantes
3.
Plant Physiol Biochem ; 202: 107927, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37544120

RESUMO

Indian pennywort (Centella asiatica L. Urban; Apiaceae) is a herbaceous plant used as traditional medicine in several regions worldwide. An adequate supply of fresh water in accordance with crop requirements is an important tool for maintaining the productivity and quality of medicinal plants. The objective of this study was to find a suitable irrigation schedule for improving the morphological and physiological characteristics, and crop productivity of Indian pennywort using high-throughput phenotyping. Four treatments were considered based on irrigation schedules (100, 75, 50, and 25% of field capacity denoted by I100 [control], I75, I50, and I25, respectively). The number of leaves, plant perimeter, plant volume, and shoot dry weight were sustained in I75 irrigated plants, whereas adverse effects on plant growth parameters were observed when plants were subjected to I25 irrigation for 21 days. Leaf temperature (Tleaf) was also retained in I75 irrigated plants, when compared with control. An increase of 2.0 °C temperature was detected in the Tleaf of plants under I25 irrigation treatment when compared with control. The increase in Tleaf was attributed to a decreased transpiration rate (R2 = 0.93), leading to an elevated crop water stress index. Green reflectance and leaf greenness remained unchanged in plants under I75 irrigation, while significantly decreased under I50 and I25 irrigation. These decreases were attributed to declined leaf osmotic potential, increased non-photochemical quenching, and inhibition of net photosynthetic rate (Pn). The asiatic acid and total centellosides in the leaf tissues, and centellosides yield of plants under I75 irrigation were retained when compared with control, while these parameters were regulated to maximal when exposed to I50 irrigation. Based on the results, I75 irrigation treatment was identified as the optimum irrigation schedule for Indian pennywort in terms of sustained biomass and a stable total centellosides. However, further validation in the field trials at multiple locations and involving different crop rotations is recommended to confirm these findings.


Assuntos
Centella , Centella/química , Centella/crescimento & desenvolvimento , Centella/fisiologia , Irrigação Agrícola , Biomassa , Plantas Medicinais/química , Plantas Medicinais/crescimento & desenvolvimento , Plantas Medicinais/fisiologia , Transpiração Vegetal , Conservação dos Recursos Hídricos
4.
Molecules ; 27(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35209196

RESUMO

Traditionally, medicinal plants have long been used as a natural therapy. Plant-derived extracts or phytochemicals have been exploited as food additives and for curing many health-related ailments. The secondary metabolites produced by many plants have become an integral part of human health and have strengthened the value of plant extracts as herbal medicines. To fulfil the demand of health care systems, food and pharmaceutical industries, interest in the cultivation of precious medicinal plants to harvest bio-active compounds has increased considerably worldwide. To achieve maximum biomass and yield, growers generally apply chemical fertilizers which have detrimental impacts on the growth, development and phytoconstituents of such therapeutically important plants. Application of beneficial rhizosphere microbiota is an alternative strategy to enhance the production of valuable medicinal plants under both conventional and stressed conditions due to its low cost, environmentally friendly behaviour and non-destructive impact on fertility of soil, plants and human health. The microbiological approach improves plant growth by various direct and indirect mechanisms involving the abatement of various abiotic stresses. Given the negative impacts of fertilizers and multiple benefits of microbiological resources, the role of plant growth promoting rhizobacteria (PGPR) in the production of biomass and their impact on the quality of bio-active compounds (phytochemicals) and mitigation of abiotic stress to herbal plants have been described in this review. The PGPR based enhancement in the herbal products has potential for use as a low cost phytomedicine which can be used to improve health care systems.


Assuntos
Bactérias/crescimento & desenvolvimento , Bioprospecção , Produtos Agrícolas , Compostos Fitoquímicos , Plantas Medicinais , Rizosfera , Microbiologia do Solo , Produtos Agrícolas/química , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia , Humanos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/uso terapêutico , Plantas Medicinais/química , Plantas Medicinais/crescimento & desenvolvimento , Plantas Medicinais/microbiologia
5.
Ecol Appl ; 32(4): e2545, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35084804

RESUMO

Medicinal plants contribute substantially to the well-being of people in large parts of the world, providing traditional medicine and supporting livelihoods from trading plant parts, which is especially significant for women in low-income communities. However, the availability of wild medicinal plants is increasingly threatened; for example, the Natal Lily (Clivia miniata), which is one of the most widely traded plants in informal medicine markets in South Africa, lost over 40% of individuals over the last 90 years. Understanding the species' response to individual and multiple pressures is essential for prioritizing and planning conservation actions. To gain this understanding, we simulated the future range and abundance of C. miniata by coupling Species Distribution Models with a metapopulation model (RAMAS-GIS). We contrasted scenarios of climate change (RCP2.6 vs. RCP8.5), land cover change (intensification vs. expansion), and harvesting (only juveniles vs. all life-stages). All our scenarios pointed to continuing declines in suitable habitat and abundance by the 2050s. When acting independently, climate change, land cover change, and harvesting each reduced the projected abundance substantially, with land cover change causing the most pronounced declines. Harvesting individuals from all life stages affected the projected metapopulation size more negatively than extracting only juveniles. When the three pressures acted together, declines of suitable habitat and abundance accelerated but uncertainties were too large to identify whether pressures acted synergistically, additively, or antagonistically. Our results suggest that conservation should prioritize the protection of suitable habitat and ensure sustainable harvesting to support a viable metapopulation under realistic levels of climate change. Inadequate management of C. miniata populations in the wild will likely have negative consequences for the well-being of people relying on this ecosystem service, and we expect there may be comparable consequences relating to other medicinal plants in different parts of the world.


Assuntos
Amaryllidaceae/fisiologia , Mudança Climática , Plantas Medicinais/fisiologia , Amaryllidaceae/crescimento & desenvolvimento , Conservação dos Recursos Naturais , Ecossistema , Feminino , Humanos , Medicina Tradicional/métodos , Plantas Medicinais/crescimento & desenvolvimento , Pobreza , África do Sul
6.
Mol Biol Rep ; 49(1): 31-38, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34773551

RESUMO

BACKGROUND: Catharanthus roseus (L.) G. Donis a medicinal plant species belonging to the Apocynaceae family, which produces vinblastine and vincristine along with 100 other monoterpenoid indole alkaloids. The process of biosynthesis of C. roseus alkaloids is complex, in which many genes, enzymes, and regulators are involved. Induced mutations may be considered as a potential source for producing a higher amount of vinblastine and vincristine in this plant species. Therefore, the objective of the present study was to examine the effects of different treatments utilized on the induced genetic changes in C. roseus plants and enzyme activities. METHODS AND RESULTS: Spermine, jasmonic acid, methyjasmonate, putrescine, and cold plasma treatments were used for seed treatments. Different molecular markers, namely inter simple sequence repeat, inter retrotransposon amplified polymorphism, and retrotransposon microsatellite amplified polymorphism were employed to reveal the induced genetic changes. Antioxidant enzyme activities were also studied. The treated plants showed genetic variability and a significant increase in antioxidant enzyme activity compared to the control plants. The putrescine treatment resulted in the highest level of activity in superoxidase. A significant positive correlation occurred between the molecular markers data and antioxidant enzyme activities in treated plants. CONCLUSION: Our data revealed that the different phytohormones and cold plasma treatments could induce both genetic and chemical content changes in C. roseus plants.


Assuntos
Catharanthus/crescimento & desenvolvimento , Repetições de Microssatélites , Reguladores de Crescimento de Plantas/farmacologia , Gases em Plasma/farmacologia , Retroelementos , Acetatos/farmacologia , Catharanthus/efeitos dos fármacos , Catharanthus/genética , Catharanthus/metabolismo , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oxilipinas/farmacologia , Proteínas de Plantas/metabolismo , Plantas Medicinais/efeitos dos fármacos , Plantas Medicinais/genética , Plantas Medicinais/crescimento & desenvolvimento , Plantas Medicinais/metabolismo , Putrescina/farmacologia , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Espermina/farmacologia , Superóxido Dismutase/metabolismo
7.
Chem Biodivers ; 19(1): e202100608, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34786852

RESUMO

A new globoscinic acid derivative, aspertubin A (1) along with four known compounds, were obtained from the co-culture of Aspergillus tubingensis S1120 with red ginseng. The chemical structures of compounds were characterized by using spectroscopic methods, the calculated and experimental electronic circular dichroism. Panaxytriol (2) from red ginseng, and asperic acid (4) showed significant antifeedant effect with the antifeedant rates of 75 % and 80 % at the concentrations of 50 µg/cm2 . Monomeric carviolin (3) and asperazine (5) displayed weak attractant activity on silkworm. All compounds were assayed for antifungal activities against phytopathogens A. tubingensis, Nigrospora oryzae and Phoma herbarum and the results indicated that autotoxic aspertubin A (1) and panaxytriol (2) possessed selective inhibition against A. tubingensis with MIC values at 8 µg/mL. The co-culture extract showed higher antifeedant and antifungal activities against P. herbarum than those of monoculture of A. tubingensis in ordinary medium. So the medicinal plant and endophyte showed synergistic effect on the plant disease resistance by active compounds from the coculture of A. tubingensis S1120 and red ginseng.


Assuntos
Antifúngicos/química , Aspergillus/química , Repelentes de Insetos/química , Panax/química , Animais , Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Ascomicetos/efeitos dos fármacos , Aspergillus/crescimento & desenvolvimento , Aspergillus/metabolismo , Bombyx/efeitos dos fármacos , Bombyx/crescimento & desenvolvimento , Enedi-Inos/química , Enedi-Inos/isolamento & purificação , Enedi-Inos/farmacologia , Álcoois Graxos/química , Álcoois Graxos/isolamento & purificação , Álcoois Graxos/farmacologia , Repelentes de Insetos/isolamento & purificação , Repelentes de Insetos/farmacologia , Testes de Sensibilidade Microbiana , Conformação Molecular , Panax/crescimento & desenvolvimento , Panax/metabolismo , Phoma/efeitos dos fármacos , Plantas Medicinais/química , Plantas Medicinais/crescimento & desenvolvimento , Plantas Medicinais/metabolismo
8.
J Sci Food Agric ; 102(2): 472-487, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34462916

RESUMO

Specialized metabolites from plants are important for human health due to their antioxidant properties. Light is one of the main factors modulating the biosynthesis of specialized metabolites, determining the cascade response activated by photoreceptors and the consequent modulation of expressed genes and biosynthetic pathways. Recent developments in light emitting diode (LED) technology have enabled improvements in artificial light applications for horticulture. In particular, the possibility to select specific spectral light compositions, intensities and photoperiods has been associated with altered metabolite content in a variety of crops. This review aims to analyze the effects of indoor LED lighting recipes and management on the specialized metabolite content in different groups of crop plants (namely medicinal and aromatic plants, microgreens and edible flowers), focusing on the literature from the last 5 years. The literature collection produced a total of 40 papers, which were analyzed according to the effects of artificial LED lighting on the content of anthocyanins, carotenoids, phenols, tocopherols, glycosides, and terpenes, and ranked on a scale of 1 to 3. Most studies applied a combination of red and blue light (22%) or monochromatic blue (23%), with a 16 h day-1 photoperiod (78%) and an intensity greater than 200 µmol m-2  s-1 (77%). These treatment features were often the most efficient in enhancing specialized metabolite content, although large variations in performance were observed, according to the species considered and the compound analyzed. The review aims to provide valuable indications for the definition of the most promising spectral components toward the achievement of nutrient-rich indoor-grown products. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Flores/química , Folhas de Planta/química , Plantas Comestíveis/metabolismo , Plantas Medicinais/metabolismo , Verduras/efeitos da radiação , Carotenoides/química , Carotenoides/metabolismo , Produção Agrícola/instrumentação , Produção Agrícola/métodos , Flores/crescimento & desenvolvimento , Flores/metabolismo , Flores/efeitos da radiação , Luz , Fenóis/química , Fenóis/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Plantas Comestíveis/química , Plantas Comestíveis/crescimento & desenvolvimento , Plantas Comestíveis/efeitos da radiação , Plantas Medicinais/química , Plantas Medicinais/crescimento & desenvolvimento , Plantas Medicinais/efeitos da radiação , Verduras/química , Verduras/crescimento & desenvolvimento , Verduras/metabolismo
9.
World J Microbiol Biotechnol ; 38(1): 15, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34878606

RESUMO

Pairs polyphylla var. yunnanensis (Paris L.) is a valuable medicinal plant used in traditional Chinese medicine. The market demand for P. polyphylla has increased over time, but it has slow growth and a low natural propagation rate. Endophytic bacteria are bioactive microorganisms that form a mutualistic relationship with host plants in long-term coordinated evolution, and they can promote the growth and accumulation of effective components in host plants. The aims of this study were to identify endophytic bacteria of P. polyphylla and to characterize their properties in promoting plant growth. A total of 10 endophytic bacteria were isolated from rhizomes of P. polyphylla. The isolated endophytes exhibited a variable capacity for indole acetic acid production, phosphate solubilization and nitrogen fixation. To investigate the effects of the endophytes on plant growth, four endophyte strains, G5, J2, G20, and Y2, were selected to compare their ability to promote plant growth. The results indicated that microbial endophytes isolated from P. polyphylla rhizomes play a vital role in improving P. polyphylla plant growth and could be used as inoculants to establish a sustainable crop production system.


Assuntos
Fenômenos Fisiológicos Bacterianos , Endófitos/fisiologia , Melanthiaceae/crescimento & desenvolvimento , Melanthiaceae/microbiologia , Desenvolvimento Vegetal , Rizoma/microbiologia , DNA Bacteriano , Interações entre Hospedeiro e Microrganismos , Ácidos Indolacéticos/metabolismo , Plantas Medicinais/crescimento & desenvolvimento , Plantas Medicinais/microbiologia , Simbiose
10.
Sci Rep ; 11(1): 23200, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853350

RESUMO

Silybum marianum (L.) Gaertn (Astraceae) is a well-reputed medicinal plant mostly utilized for silymarin (Sily) content and oil production, however, the information about Sily contents in achene part is still fragmented under different climatic conditions. In this study four milk thistle ecotypes from Faisalabad (FSD), Gujranwala (GUJ), Quetta (QTA), and Kallar kahar (KK) having an altered achene color were analyzed under salt stress. Application of plant growth promoters (PGPs) is one of the solution for ameliorating the effect of salinity and increasing the quantity and quality traits of milk thistle, so ascorbic acid (AsA), thiourea (TU), and moringa leaf extract (MLE) were soil supplied after developing salinity stress (120 mM with irrigation) at germination stage. Predetermined levels were selected for PGPs such as AsA (500 µM), MLE (3%), and TU (250 µM). Results revealed that all yield related attributes were significantly decreased, while secondary metabolites, pericarp epidermis, pericarp parenchyma, and pericarp seed integument increased under salinity stress. Data suggested that PGPs treatment was helpful to alleviate the deleterious effects of salinity stress and enhance the milk thistle quality and quantity parameters. The ecotypic variations with altered achene color patterns represent an advantage for QTA ecotypes for higher Sily extraction under salt stressed conditions.


Assuntos
/crescimento & desenvolvimento , Ácido Ascórbico/metabolismo , Ecótipo , Reguladores de Crescimento de Plantas/metabolismo , Plantas Medicinais/crescimento & desenvolvimento , Plantas Medicinais/fisiologia , Estresse Salino , Solo/química
11.
Molecules ; 26(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34946527

RESUMO

L. indica L. cv. Mengzao, a medicinal plant of the Ixeris genus, is rich in flavonoids. In order to thoroughly analyze the the distribution and dynamic change of major flavonoids in its various parts from different growth periods, the flavonoids extracted from L. indica L. cv. Mengzao were identified and quantitatively analyzed by ultra-high-performance liquid chromatography mass spectrometer (LC-MS/MS). Results indicated that 15 flavonoids were identified from L. indica L. cv. Mengzao, and rutin, luteolin, luteolin-7-O-glucoside, kaempferol, quercetin, and apigenin are the major flavonoids in L. indica L. cv. Mengzao. In general, the total flavonoids' content in different parts of L. indica L. cv. Mengzao followed the order flowers > leaves > stems > roots. Flowers and leaves are the main harvesting parts of L. indica L. cv. Mengzao, and the flowering period is the most suitable harvesting period. This study provides valuable information for the development and utilization of L. indica L. cv. Mengzao and determined the best part to harvest and the optimal time for harvesting.


Assuntos
Flavonoides/análise , Componentes Aéreos da Planta , Raízes de Plantas , Plantas Medicinais , /química , Componentes Aéreos da Planta/química , Componentes Aéreos da Planta/crescimento & desenvolvimento , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Plantas Medicinais/química , Plantas Medicinais/crescimento & desenvolvimento
12.
Sci Rep ; 11(1): 22169, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34772968

RESUMO

Folk medicine such as herbal and natural products have been used for centuries in every culture throughout the world. The Chenopodiaceae family with more than 1500 species is dispersed worldwide. The Iranian wild spinach (Blitum virgatum L.) is an important traditional medicinal plant used for antiviral diseases such as pneumonia and other respiratory track infections. This plant is a mountainous herb and is growing upper than 3000 m. We performed a mass selection plant breeding program on wild populations of this Iranian wild spinach during 2013-2020. Based on experimental and field characteristics this plant was identified as B. virgatum, |abbaricum|, and related characteristics were prepared with reference to the International Union for the Protection of New Varieties of Plants (UPOV). Mass selection program resulted from an adapted population named as medicinal spinach (MSP) population. To compare the mineral content of the mass-selected population with cultivated spinach (Spinacia oleracea L. |Varamin 88|), both plants were planted in pots and fields under similar conditions. In five leaves stage, plant samples were taken from both leaf and crown sections and used for experimental analysis. Atomic absorption spectroscopy was used to determine the mineral content including iron (Fe), zinc (Z), manganese (Mn), and copper (Cu). Our results showed the selected medicinal spinach population (MSP) with about 509 ppm iron was an important iron-rich population with about 3.5-4 times more than the amount of iron in cultivated spinach in the same conditions. Because iron is an important essential element for blood production, respiration process, energy metabolisms, synthesis of collagen, and some neurotransmitters are needed for proper immune function, so the supply of absorbable adequate iron is very important. The reasons such as the prevalence of the COVID-19 pandemic, which affects the amount of exchangeable oxygen in the lungs and historical local evidences of the use of this plant (MSP) for pneumonia, could open new horizons for focusing on studies related to the use of ancestral human experiences in addition to scientifically modern research.


Assuntos
Ferro/análise , Melhoramento Vegetal , Plantas Medicinais/crescimento & desenvolvimento , Spinacia oleracea/crescimento & desenvolvimento , COVID-19/terapia , Cobre/análise , Humanos , Irã (Geográfico) , Manganês/análise , Minerais/análise , Fitoterapia , Plantas Medicinais/química , Spinacia oleracea/química , Zinco/análise
13.
Molecules ; 26(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34684788

RESUMO

It is known that Senna obtusifolia has been used in medicine since ancient times due to the content of many valuable compounds with a pro-health effect. One of them is betulinic acid, which is a pentacyclic triterpene with antimalarial, antiviral, anti-inflammatory and anticancer properties. In this work, a continuation of our previous research, an attempt was made to increase the level of betulinic acid accumulation by the cultivation of transgenic hairy roots that overexpress the squalene synthase gene in a 10 L sprinkle bioreactor with methyl jasmonate elicitation. We present that the applied strategy allowed us to increase the content of betulinic acid in hairy root cultures to the level of 48 mg/g dry weight. The obtained plant extracts showed a stronger cytotoxic effect on the U87MG glioblastoma cell line than the roots grown without elicitors. Additionally, the induction of apoptosis, reduction of mitochondrial membrane potential, chromosomal DNA fragmentation and activation of caspase cascades are demonstrated. Moreover, the tested extract showed inhibition of topoisomerase I activity.


Assuntos
Acetatos/farmacologia , Antineoplásicos Fitogênicos/metabolismo , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Triterpenos Pentacíclicos/metabolismo , Senna (Planta)/efeitos dos fármacos , Senna (Planta)/metabolismo , Células A549 , Antineoplásicos Fitogênicos/biossíntese , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Reatores Biológicos , Biotecnologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Fragmentação do DNA/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Triterpenos Pentacíclicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plantas Medicinais/efeitos dos fármacos , Plantas Medicinais/crescimento & desenvolvimento , Plantas Medicinais/metabolismo , Senna (Planta)/crescimento & desenvolvimento , Ácido Betulínico
14.
Biomolecules ; 11(10)2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34680145

RESUMO

Salvia bulleyana is a rare Chinese medicinal plant that due to the presence of polyphenols lowers the risk of some chronic diseases especially those related to the cardiovascular system. The present study examines the organogenic competence of various combinations and concentrations of plant growth regulators to develop an efficient protocol for in vitro regeneration of S. bulleyana via leaf explants, maintaining the high production of active constituents. The purpose of the study was also to assess the possibilities of using a cytokinin-based regeneration to effectively produce therapeutic compounds. The adventitious shoot formation was observed through direct organogenesis on media with purine derivatives (meta-topolin, mT and benzylaminopurine, BAP), and through indirect organogenesis on media with urea derivatives (tidiazuron, TDZ and forchlorfenuron, CPPU). The highest regeneration frequency (95%) with 5.2 shoots per explant was obtained on leaves cultured on Murashige and Skoog (MS) medium containing 0.1 mg/L naphthalene-1-acetic acid (NAA) and 2 mg/L BAP. Following inter simple sequence repeat (ISSR) marker-based profiling, the obtained organogenic shoot lines revealed a similar banding pattern to the mother line, with total variability of 4.2-13.7%, indicating high level of genetic stability. The similar genetic profile of the studied lines translated into similar growth parameters. Moreover, HPLC analysis revealed no qualitative differences in the profile of bioactive metabolites; also, the total polyphenol content was similar for different lines, with the exception of the shoots obtained in the presence of CPPU that produced higher level of bioactive compounds. This is the first report of an effective and rapid in vitro organogenesis protocol for S. bulleyana, which can be efficiently employed for obtaining stable cultures rich in bioactive metabolites.


Assuntos
Citocininas/farmacologia , Plantas Medicinais/crescimento & desenvolvimento , Salvia/química , Técnicas de Cultura de Tecidos , Compostos de Benzil/farmacologia , Meios de Cultura/química , Meios de Cultura/farmacologia , Humanos , Medicina Tradicional Chinesa , Reguladores de Crescimento de Plantas/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Plantas Medicinais/química , Purinas/farmacologia , Regeneração/efeitos dos fármacos , Salvia/crescimento & desenvolvimento
15.
Chem Biodivers ; 18(11): e2100345, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34533273

RESUMO

Medicinal plants, a source of different phytochemical compounds, are now subjected to a variety of environmental stresses during their growth and development. Different ecologically limiting factors including temperature, carbon dioxide, lighting, ozone, soil water, soil salinity and soil fertility has significant impact on medicinal plants' physiological and biochemical responses, as well as the secondary metabolic process. Secondary metabolites (SMs) are useful for assessing the quality of therapeutic ingredients and nowadays, these are used as important natural derived drugs such as immune suppressant, antibiotics, anti-diabetic, and anti-cancer. Plants have the ability to synthesize a variety of secondary metabolites to cope with the negative effects of stress. Here, we focus on how individual environmental variables influence the accumulation of plant secondary metabolites. A total of 48 articles were found to be relevant to the review topic during our systematic review. The review showed the influence of different environmental variables on SMs production and accumulation is complex suggesting the relationship are not only species-specific but also related to increases and decline in SMs by up to 50 %. Therefore, this review improves our understanding of plant SMs ability to adapt to key environmental factors. This can aid in the efficient and long-term optimization of cultivation techniques under ambient environmental conditions in order to maximize the quality and quantity of SMs in plants.


Assuntos
Dióxido de Carbono/química , Luz , Ozônio/química , Plantas Medicinais/metabolismo , Solo/química , Temperatura , Plantas Medicinais/química , Plantas Medicinais/crescimento & desenvolvimento , Água/química
16.
Nat Plants ; 7(9): 1239-1253, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34475528

RESUMO

Aristolochia, a genus in the magnoliid order Piperales, has been famous for centuries for its highly specialized flowers and wide medicinal applications. Here, we present a new, high-quality genome sequence of Aristolochia fimbriata, a species that, similar to Amborella trichopoda, lacks further whole-genome duplications since the origin of extant angiosperms. As such, the A. fimbriata genome is an excellent reference for inferences of angiosperm genome evolution, enabling detection of two novel whole-genome duplications in Piperales and dating of previously reported whole-genome duplications in other magnoliids. Genomic comparisons between A. fimbriata and other angiosperms facilitated the identification of ancient genomic rearrangements suggesting the placement of magnoliids as sister to monocots, whereas phylogenetic inferences based on sequence data we compiled yielded ambiguous relationships. By identifying associated homologues and investigating their evolutionary histories and expression patterns, we revealed highly conserved floral developmental genes and their distinct downstream regulatory network that may contribute to the complex flower morphology in A. fimbriata. Finally, we elucidated the genetic basis underlying the biosynthesis of terpenoids and aristolochic acids in A. fimbriata.


Assuntos
Aristolochia/crescimento & desenvolvimento , Aristolochia/genética , Ácidos Aristolóquicos/biossíntese , Evolução Biológica , Flores/crescimento & desenvolvimento , Flores/genética , Magnoliopsida/genética , Terpenos/metabolismo , Ácidos Aristolóquicos/genética , Variação Genética , Genoma de Planta , Genótipo , Filogenia , Plantas Medicinais/genética , Plantas Medicinais/crescimento & desenvolvimento
17.
BMC Plant Biol ; 21(1): 414, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34503445

RESUMO

BACKGROUND: Adventitious root formation is considered a major developmental step during the propagation of difficult to root plants, especially in horticultural crops. Recently, adventitious roots induced through plant tissue culture methods have also been used for production of phytochemicals such as flavonoids, anthocyanins and anthraquinones. It is rather well understood which horticultural species will easily form adventitious roots, but the factors affecting this process at molecular level or regulating the induction process in in vitro conditions are far less known. The present study was conducted to identify transcripts involved in in vitro induction and formation of adventitious roots using Arnebia euchroma leaves at different time points (intact leaf (control), 3 h, 12 h, 24 h, 3 d, 7 d, 10 d and 15 d). A. euchroma is an endangered medicinal Himalayan herb whose root contains red naphthoquinone pigments. These phytoconstituents are widely used as an herbal ingredient in Asian traditional medicine as well as natural colouring agent in food and cosmetics. RESULTS: A total of 137.93 to 293.76 million raw reads were generated and assembled to 54,587 transcripts with average length of 1512.27 bps and N50 of 2193 bps, respectively. In addition, 50,107 differentially expressed genes were identified and found to be involved in plant hormone signal transduction, cell wall modification and wound induced mitogen activated protein kinase signalling. The data exhibited dominance of auxin responsive (AUXIN RESPONSE FACTOR8, IAA13, GRETCHEN HAGEN3.1) and sucrose translocation (BETA-31 FRUCTOFURANOSIDASE and MONOSACCHARIDE-SENSING protein1) genes during induction phase. In the initiation phase, the expression of LATERAL ORGAN BOUNDARIES DOMAIN16, EXPANSIN-B15, ENDOGLUCANASE25 and LEUCINE-rich repeat EXTENSION-like proteins was increased. During the expression phase, the same transcripts, with exception of LATERAL ORGAN BOUNDARIES DOMAIN16 were identified. Overall, the transcriptomic analysis revealed a similar patterns of genes, however, their expression level varied in subsequent phases of in vitro adventitious root formation in A. euchroma. CONCLUSION: The results presented here will be helpful in understanding key regulators of in vitro adventitious root development in Arnebia species, which may be deployed in the future for phytochemical production at a commercial scale.


Assuntos
Boraginaceae/genética , Folhas de Planta , Proteínas de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Boraginaceae/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Indóis/farmacologia , Anotação de Sequência Molecular , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Plantas Medicinais/genética , Plantas Medicinais/crescimento & desenvolvimento , Análise de Sequência de RNA , Técnicas de Cultura de Tecidos/métodos
18.
BMC Plant Biol ; 21(1): 348, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301189

RESUMO

BACKGROUND: The oil-tea tree (Camellia oleifera Abel.) is a woody tree species that produces edible oil in the seed. C. oleifera oil has high nutritional value and is also an important raw material for medicine and cosmetics. In China, due to the uncertainty on maturity period and oil synthesis mechanism of many C. oleifera cultivars, growers may harvest fruits prematurely, which could not maximize fruit and oil yields. In this study, our objective was to explore the mechanism and differences of oil synthesis between two Camellia oleifera cultivars for a precise definition of the fruit ripening period and the selection of appropriate cultivars. RESULTS: The results showed that 'Huashuo' had smaller fruits and seeds, lower dry seed weight and lower expression levels of fatty acid biosynthesis genes in July. We could not detect the presence of oil and oil bodies in 'Huashuo' seeds until August, and oil and oil bodies were detected in 'Huajin' seeds in July. Moreover, 'Huashuo' seeds were not completely blackened in October with up to 60.38% of water and approximately 37.98% of oil in seed kernels whose oil content was much lower than normal mature seed kernels. The oil bodies in seed endosperm cells of 'Huajin' were always higher than those of 'Huashuo' from July to October. CONCLUSION: Our results confirmed that C. oleifera 'Huashuo' fruits matured at a lower rate compared to 'Huajin' fruits and that 'Huajin' seeds entered the oil synthesis period earlier than 'Huashuo' seeds. Moreover, 'Huashuo' fruits did not mature during the Frost's Descent period (October 23-24 each year).


Assuntos
Camellia/crescimento & desenvolvimento , Camellia/genética , Camellia/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/genética , Frutas/metabolismo , Óleos de Plantas/metabolismo , China , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Ácidos Graxos/metabolismo , Variação Genética , Genótipo , Melhoramento Vegetal , Plantas Medicinais/genética , Plantas Medicinais/crescimento & desenvolvimento , Plantas Medicinais/metabolismo , Transcriptoma
19.
J Plant Physiol ; 263: 153466, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34216845

RESUMO

Panax notoginseng (Bruk.) FH Chen is a valuable traditional herb in China, with saponins being the main medicinal components in its roots. However, leaf diseases are a major factor limiting growth and production of P. notoginseng. Melatonin is a ubiquitous signaling molecule associated with abiotic stress resistance. In this study, we investigated the role of melatonin in leaf disease resistance of P. notoginseng in field conditions. Additionally, saponin concentrations were analyzed to evaluate the suitability of melatonin use in agricultural practice. Our results showed that exogenous application of melatonin promoted the endogenous phytomelatonin accumulation via upregulation of genes involved in its biosynthesis. The application of 10 µM melatonin decreased the incidence of leaf diseases (gray mold, round spot, and black spot) by about 40% compared with the solvent control, which might have been due to the increased expression of genes associated with immunity and disease resistance. Furthermore, concentrations of saponins and expression of their biosynthesis-related genes were significantly increased by melatonin. Taken together, the data presented here suggested that melatonin could be used in agricultural management of P. notoginseng because it increased leaf disease resistance and biosynthesis of saponins.


Assuntos
Resistência à Doença/fisiologia , Melatonina/metabolismo , Panax notoginseng/crescimento & desenvolvimento , Panax notoginseng/metabolismo , Doenças das Plantas , Folhas de Planta/metabolismo , Saponinas/biossíntese , China , Plantas Medicinais/crescimento & desenvolvimento , Plantas Medicinais/metabolismo
20.
Sci Rep ; 11(1): 15202, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34312445

RESUMO

Medicinal plants are considered as one of the most important sources of chemical compounds, so preparing a suitable culture media for medicinal plant growth is a critical factor. The present study is aimed to improve the caffeic acid derivatives and alkylamides percentages of Echinacea purpurea root extract in hydroponic culture media with different perlite particle size and NO3-/NH4+ ratios. Perlite particle size in the growing media was varied as very coarse perlite (more than 2 mm), coarse perlite (1.5-2 mm), medium perlite (1-1.5 mm), fine perlite (0.5-1 mm), and very fine perlite (less than 0.5 mm) in different ratios to peat moss (including pure perlite, 50:50 v/v, 30:70 v/v, and pure peat moss). Two NO3-/NH4+ ratios (90:10 and 70:30) were tested in each growing media. All phytochemical analyses were performed according to standard methods using high performance liquid chromatography (HPLC). It was found that the E. purpurea grown in the medium containing very fine-grade perlite with 50:50 v/v perlite to peat moss ratio had the maximum caffeic acid derivatives, including chicoric acid (17 mg g-1 DW), caftaric acid (6.3 mg g-1 DW), chlorogenic acid (0.93 mg g-1 DW), cynarin (0.84 mg g-1 DW), and echinacoside (0.73 mg g-1 DW), as well as, alkylamides (54.21%). The percentages of these phytochemical compounds increased by decreasing perlite particle size and increasing of NO3-/NH4+ ratio. The major alkylamide in the E. purpurea root extract was dodeca-2E, 4E, 8Z-10 (E/Z)-tetraenoic acid isobutylamide in all treatments, ranging from 31.12 to 54.21% of total dry weight. It can be concluded that optimizing hydroponic culture media and nutrient solution has significant effects on E. purpurea chemical compounds.


Assuntos
Óxido de Alumínio , Ácidos Cafeicos/metabolismo , Echinacea/metabolismo , Hidroponia , Compostos de Nitrogênio , Dióxido de Silício , Amidas/metabolismo , Meios de Cultura , Echinacea/crescimento & desenvolvimento , Tamanho da Partícula , Fenóis/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Medicinais/crescimento & desenvolvimento , Plantas Medicinais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...